Identification of Glypican-3 as a Novel Tumor Marker for Melanoma

Tetsuya Nakatsura,¹ Toshiro Kageshita,² Shosuke Ito,³ Kazumasa Wakamatsu,³ Mikio Monji,¹ Yoshiaki Ikuta,¹ Satoru Senju,¹ Tomomichi Ono,² and Yasuharu Nishimura¹

Departments of ¹Immunogenetics and ²Dermatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto; and ³Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan

ABSTRACT

Purpose: We reported recently the novel tumor marker glypican-3 (GPC3) for hepatocellular carcinoma. In the present study, we investigated the expression of *GPC3* in human melanoma cell lines and tissues and asked whether GPC3 could be a novel tumor marker for melanoma.

Experimental Design: Expression of GPC3 mRNA and protein was investigated in human melanoma cell lines and tissues using reverse transcription-PCR and immunohistochemical analysis. Secreted GPC3 protein was quantified using ELISA in culture supernatants of melanoma cell lines and in sera from 91 patients with melanoma and 28 disease-free patients after surgical removal of primary melanoma. All of the subjects were Japanese nationals.

Results: In >80% of melanoma and melanocytic nevus, there was evident expression of *GPC3* mRNA and protein. Furthermore, GPC3 protein was evidenced in sera of 39.6% (36 of 91) of melanoma patients but not in sera from subjects with large congenital melanocytic nevus (0 of 5) and from healthy donors (0 of 60). Twenty-seven of 36 serum GPC3positive patients were negative for both serum 5-S-cysteinyldopa and melanoma-inhibitory activity, well-known tumor markers for melanoma. The positive rate of serum GPC3 (39.6%) was significantly higher than that of 5-S-cysteinyldopa (26.7%) and of melanoma-inhibitory activity (20.9%). Surprisingly, we detected serum GPC3 even in patients with stage 0 *in situ* melanoma. The positive rate of serum GPC3 at stage 0, I, and II (44.4%, 40.0%, and 47.6%) was significantly higher than that of 5-S-cysteinyldopa (0.0%, 8.0%, and 10.0%). Also observed was the disappearance of GPC3 protein in sera from 11 patients after surgical removal of the melanoma.

Conclusions: GPC3 is apparently a novel tumor marker useful for the diagnosis of melanoma, especially in early stages of the disorder.

INTRODUCTION

The incidence of melanoma is increasing worldwide. In the last decade, several molecules have been evaluated as tumor markers to detect melanoma, including melanin metabolites, adhesion molecules, cytokines, and melanoma-associated antigens [reviewed by Brochez and Naeyaert (1), Hauschild et al. (2), and Hartleb and Arndt (3)]. Several investigators reported that 5-S-cysteinyldopa is useful as a marker for melanoma progression or for monitoring metastatic melanoma (4-7). 5-Scysteinyldopa is usually used as tumor marker for melanoma in Japan, and the usefulness of melanoma-inhibitory activity was reported (8, 9). However, current methods are not sensitive enough to detect organ metastasis at such early stages. There is no available tumor marker that can detect primary melanoma at early stages, with a small size and without metastasis. A simple, inexpensive, and noninvasive method to detect a serum tumor marker would aid the management of high-risk patients.

We recently identified glypican-3 (GPC3) overexpressed specifically in human hepatocellular carcinoma, as based on cDNA microarray data, and we reported that GPC3 is a novel tumor marker for hepatocellular carcinoma (10). Soluble GPC3 protein was detected in sera of hepatocellular carcinoma patients but not in case of other liver diseases or cancers other than melanoma. We also accidentally detected *GPC3*-expression in a B16 mouse melanoma cell line. This observation prompted us to examine the expression of GPC3 in human melanoma, and we asked whether GPC3 might be a novel tumor marker for melanoma. Indeed, GPC3 was detected in the sera of 40% patients with melanoma, irrespective of clinical stages and even in the sera of patients with stage 0 *in situ* melanoma.

MATERIALS AND METHODS

Melanoma and Melanocytic Nevus Tissues, Blood Samples, and Cell Lines. After receiving informed written consent, we obtained tissue and blood samples from melanoma and melanocytic nevus patients treated in the Department of Dermatology, Graduate School of Medical Sciences, Kumamoto University (Kumamoto, Japan). They were stored at -80° C until use. We collected patient profiles from medical records to determine the clinical stages, according to the Unio Internationale Contra Cancrum/American Joint Committee on Cancer Tumor-Node-Metastasis classification (11).

Received 2/24/04; revised 5/15/04; accepted 5/18/04.

Grant support: Grants-in-Aid 14770142, 12213111, and 14570812 from the Ministry of Education, Science, Technology, Sports, and Culture, Japan, and a Grant-in-Aid for Cancer Research (15–11) from the Ministry of Health, Labor, and Welfare, Japan.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked *advertisement* in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Requests for reprints: Prof. Yasuharu Nishimura, Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan. Phone: 81-96-373-5310; Fax: 81-96-373-5314; E-mail: mxnishim@gpo.kumamoto-u. ac.jp.

^{©2004} American Association for Cancer Research.

Ninety-one consecutive and preoperative patients with melanoma consisted of 43 men and 48 women with an average age of 65.7 years (range, 22 to 89 years); 9 had stage 0 (*in situ*); 25 had stage I; 21 had stage II; 18 had stage III; and 18 had stage IV melanoma. Twenty-eight disease-free patients after removal of primary lesions consisted of 15 men and 13 women; One had stage 0; 8 had stage I; 14 had stage II; and 5 had stage III melanoma. All of the patients were Japanese nationals.

Melanoma cell lines CRL1579, G361, HMV-I, and SK-MEL-28 were kindly provided by the Cell Resource Center for Biomedical Research Institute of Development, Aging, and Cancer, Tohoku University (Sendai, Japan), and 888mel and 526mel were provided by Dr. Yutaka Kawakami, Keio University (Tokyo, Japan). HMV-I, SK-MEL-28, Ihara, and MeWo were cultured in DMEM supplemented with 10% fetal calf serum, and CRL1579, G361, 888mel, 526mel, 164, SK-MEL-19, and Colo38 were cultured in RPMI 1640 supplemented with 10% fetal calf serum. Human epidermal melanocytes, neonatal, in culture medium 154S supplemented with human melanocyte growth supplement were purchased from KURABO (Osaka, Japan).

Reverse Transcription-PCR. Total RNA was isolated from homogenized tissues and cell lines using the TRIZOL Reagent (Life Technologies, Inc., Rockville, MD). Reverse transcription-PCR (RT-PCR) was done, as described (12). We designed *GPC3* gene-specific PCR primers to amplify fragments of 939 bp, and we used RT-PCR reactions consisting of initial denaturation at 94°C for 5 minutes, and 30 amplification cycles at an annealing temperature of 58°C. *GPC3* PCR primer sequences were: sense, 5'-GTTACTGCAATGTGGTCATGC-3' and antisense, 5'-CTGGTGCCCAGCACATGT-3'; β-actin: sense, 5'-CCTCGCCTTTGCCGATCC-3' and antisense, 5'-GGATCTTC-ATGAGGTAGTCAGTC-3'. After normalization by β-actin mRNA as a control we compared the expression of *GPC3* mRNA in tissues and cell lines.

Immunohistochemical Examination and ELISA. Immunohistochemical examinations were done, as described (13, 14). We stained sections with antihuman GPC3 303–464 antibodies (H-162; Santa Cruz Biotechnology, Santa Cruz, CA). For the negative control, staining replaced the primary antibody with an immunoglobulin fraction from preimmune rabbit serum. The percentage of stained cells in each section was estimated independently by two observers (T. K. and T.O.). ELISA of GPC3 was done as described (10). In ELISA method-1, we used the same anti-GPC3 antibody (H162) and its biotinylated one. To independently confirm the accuracy of this ELISA system for specific detection of GPC3, we used another antihuman GPC3 goat polyclonal antibody (W-18) raised against a NH₂-terminal peptide (Santa Cruz Biotechnology) and used this antibody for ELISA detection of serum GPC3. Sandwich ELISA method-2 was performed by using W-18 fixed on the solid surface and biotinylated H-162.

Statistical Analysis. We analyzed all of the data using the StatView statistical program for Macintosh (SaS, Cary, NC), then evaluated the statistical significance using Student's *t* test, χ^2 , and Fisher's exact test. We considered *P*s < 0.05 to be statistically significant.

RESULTS

Expression of GPC3 mRNA in Human Melanoma. We examined expression of GPC3 mRNA using RT-PCR. Expression of GPC3 mRNA was evidenced in 8 of 11 human melanoma cell lines (Fig. 1A). 164, 888mel, Ihara, CRL1579, and MeWo melanoma cell lines showed stronger expression of GPC3 mRNA than did 526mel, G361, and SK-MEL-28, whereas SK-MEL-19, Colo38, and HMV-I showed no such expression. Primary tumor of melanoma from patients 50, 65, 78, 71 (Fig. 1B), and 68 (data not shown), and lymph node metastasis of patient 65 (Fig. 1B) showed positive expression, whereas normal skin, including a few melanocytes, showed no such expression (Fig. 1B). On the contrary, cultured human neonatal epidermal melanocytes showed moderate expression of GPC3 mRNA. Tissues of melanocytic nevus also showed positive expression (Fig. 1B). Hence, all of the tissues of melanoma and melanocytic nevus we checked showed positive GPC3 mRNA expression.

Expression of GPC3 Protein in Human Melanoma Tissues. An immunohistochemical analysis of GPC3 was made on 21 primary melanomas and 11 melanocytic nevus tissues. The results of immunostaining are classified by the percentage of stained cells: +++, >75%; ++, 50% to 75%; +, 25% to 50%; \pm , <25%; -, negative. The results in melanoma are summarized in Table 1, and representative staining is shown in Fig. 2. Many cases of primary melanoma lesions (17 of 21, 81.0%) showed expression of GPC3 protein in melanoma cells (+++, 6; ++, 6; +, 0; \pm , 5; -, 4 cases; Table 1, Fig. 2, *A* and *B*). Ten of 11 melanocytic nevus lesions also showed positive expression (+++, 4; ++, 4; +, 1; \pm , 1; -, 1 cases; Fig. 2*C*).

The Presence of Soluble GPC3 Protein in Culture Supernatants of Melanoma Cell Lines and Sera from Melanoma Patients. We next detected soluble GPC3 using ELISA method-1. The evidence that our ELISA system detected soluble GPC3 in culture supernatant of NIH3T3 transfected with mouse *GPC3* gene but not in that of wild-type NIH3T3 cells supports the accuracy of ELISA (data not shown). We defined the con-

Fig. 1 Expression of *GPC3* mRNA in human melanoma, melanocyte, and melanocytic nevus. *A*, expression of *GPC3* mRNA detected using RT-PCR in human melanoma cell lines (*Lanes 1–11*) and neonatal epidermal melanocytes (HEMn; *Lane 12*). *Lanes 1*: 164, 2: 888mel, 3: Ihara, 4: CRL1579, 5: 526mel, 6: G361, 7: MeWo, 8: SK-MEL-28, 9: SK-MEL-19, 10: Colo38, 11: HMV-I, 12: HEMn. *B*, expression of *GPC3* mRNA detected using RT-PCR in human tissues of normal epidermis (*Lane 1*), melanoma (*Lanes 2–6*), and melanocytic nevus (*Lanes 7* and 8). Primary melanoma tissues originated from patient 50: *Lane 2*, patient 76: *Lane 5*, patient 71: *Lane 6*, and tissue of metastasis to lymph node of patient 65 is shown in *Lane 4*.

							Serum concentrations of tumor markers				
					GPC3 ex	pression	GPC3 (U/ml)				
Pt. ID	Stage*	Age	Sex	Туре	mRNA†	Protein‡	Method 1§	Method 2¶	5-S-CD (nmol/L)	MIA (ng/ml)**	
1	0	60	М	SSM			0	0	4.6	12.3	
2	0	64	F	LM			0	0	2.8	9.8	
3	0	78	F	ALM			0	0	2.9	14.1	
4	0	74	Μ	LM			0	0	6.2	<u>19.4</u>	
5	0	85	F	ALM		+++	<u>25</u>	<u>24</u>	3.2	9.5	
6	0	72	Μ	LM			0	0	3.8	14.5	
7	0	48	F	ALM			<u>38</u>	<u>41</u>	3.3	8.4	
8	0	69	F	ALM			<u>22</u>	<u>26</u>	2.6	10.0	
9	0	66	F	ALM		-	102	<u>4</u>	4./	12.2	
10	IA	33 97		IMM		土	<u>105</u> 40	$\frac{104}{41}$	1.9	/.8	
12	IA IΔ	82 75	F	SSM		+	$\frac{40}{25}$	<u>41</u> 10	3.9	$\frac{17.2}{16.5}$	
13	IA	41	F	SSM			$\frac{25}{20}$	13	23	6.8	
14	IA	70	F	MUCOUS			$\frac{20}{0}$	0	2.4	12.1	
15	IA	78	Μ	ALM			0	0	11.0	17.8	
16	IA	60	F	ALM		<u>+</u>	0	0	3.6	16.4	
17	IA	61	Μ	ALM			0	0	1.0	10.1	
18	IA	62	F	ALM			0	0	5.9	10.6	
19	IA	73	Μ	ALM			0	0	3.6	10.8	
20	IA	70	M	LMM			<u>20</u>	<u>21</u>	8.0	16.2	
21	IA	33	F	MUCOUS			$\frac{10}{2}$	<u>15</u>	3.6	8.2	
22	IA	66	M	ALM			0	0	5.9	13./	
23	IA	/0 59		ALM			0	0	5.8	$\frac{18.5}{10.8}$	
24	IA IΔ	20 80	M	IMM			0	0	4.4	10.8	
25	IR	58	F	ALM			61	98	2.5	89	
20	IB	58	F	MUCOUS		_	$\frac{01}{0}$	$\frac{20}{0}$	8.6	13.4	
28	IB	66	F	MUCOUS			23	44	2.9	13.6	
29	IB	56	F	SSM			10	11	2.3	13.8	
30	IB	64	F	ALM			20	8	7.5	15.5	
31	IB	84	F	ALM			0	0	2.0	8.9	
32	IB	79	Μ	ALM		+++	0	0	7.3	<u>18.7</u>	
33	IB	76	F	ALM			0	0	5.7	16.3	
34	IB	74	F	ALM		++	0	0	2.8	14.7	
35	IIA	74	F	SSM			106	<u>108</u>	<u>17.4</u>	10.5	
30	IIA	75	M	ALM			<u>54</u> 16	<u>61</u>	N I TT	13.5	
38	ΠA	74 64	г М	ALM		+	$\frac{10}{0}$	<u>o</u> 0	5.4 4.6	12.3	
39	IIA	47	F	SSM		_	0	0	4.0	14.0	
40	IIA	77	F	LMM			34	39	3.9	9.4	
41	IIB	50	F	SSM			75	59	6.4	15.3	
42	IIB	72	Μ	LMM			73	66	7.0	13.1	
43	IIB	88	Μ	ALM		++	0	0	1.2	12.8	
44	IIB	63	Μ	ALM		_	0	0	3.7	11.2	
45	IIB	77	Μ	SSM			0	0	NT	11.8	
46	IIB	69	M	ALM			<u>15</u>	<u>16</u>	4.6	9.9	
47	IIB	57	M E	ALM			0	0	3.4	$\frac{1/.1}{14.7}$	
40 49	IID	71	r M	ALM		++	0	0	5.5 4 7	14.7	
50	IIC	79	F	ALM	+		25	30	3.8	62	
51	IIC	42	M	SSM		_	0	0	6.3	7.9	
52	IIČ	72	F	ALM			0	Õ	3.6	12.2	
53	IIC	75	F	MUCOUS			0	0	8.7	13.0	
54	IIC	77	М	ALM			<u>16</u>	<u>19</u>	7.3	10.9	
55	IIC	83	М	SSM			<u>10</u>	<u>9</u>	<u>13.3</u>	11.3	
56	IIIA	83	М	ALM		++	0	0	7.7	<u>19.5</u>	
57	IIIA	55	M	ALM			0	0	8.2	10.2	
50	IIIA	86 70	Г Г	ALM		++	0	0	9.7	12.5	
39 60	IIIA IIIA	79 70	г м			+++	0	0	0.1	13.9	
61	IIIA	63	F	SSM			10	7	11.8	12.1	
62	IIIA	79	M	NM			$\frac{10}{10}$	10	4.0	14.9	
63	IIIA	53	F	MUCOUS			0	0	5.2	13.7	
64	IIIB	85	М	ALM			<u>140</u>	<u>126</u>	9.2	<u>24.4</u>	
65	IIIB	56	М	LMM	+		0	0	<u>15.5</u>	14.9	

Table 1 Profile	es of 91 Japanese	patients with m	helanoma, and	quantification of	GPC3, 5-S-CI	D, and MIA i	n sera of patient

							Serum concentrations of tumor markers			
					GPC3 ex	pression	GPC3	(U/ml)		
Pt. ID	Stage*	Age	Sex	Туре	mRNA†	Protein‡	Method 1§	Method 2¶	5-S-CD (nmol/L)	MIA (ng/ml)**
66	IIIB	59	Μ	MUCOUS			0	0	1.2	7.0
67	IIIB	77	Μ	ALM			<u>67</u>	<u>85</u>	7.1	12.1
68	IIIC	35	F	NM	+		<u>132</u>	<u>130</u>	8.4	6.3
69	IIIC	63	F	ALM		<u>+</u>	<u>18</u>	<u>8</u>	4.9	14.0
70	IIIC	50	F	unknown			0	0	5.9	28.6
71	IIIC	47	Μ	MUCOUS	+		0	0	<u>10.3</u>	5.9
72	IIIC	70	Μ	ALM		_	<u>22</u>	<u>20</u>	<u>24.2</u>	11.4
73	IIIC	63	Μ	ALM			0	0	<u>14.4</u>	15.1
74	IV	47	F	SSM		++	<u>35</u>	<u>37</u>	<u>12.7</u>	86.0
75	IV	77	Μ	ALM			0	0	<u>748</u>	<u>102</u>
76	IV	65	Μ	unknown			0	0	<u>492</u>	23.1
77	IV	78	Μ	MUCOUS			0	0	<u>44.6</u>	14.6
78	IV	60	F	SSM	+		0	0	<u>32.4</u>	26.8
79	IV	76	F	MUCOUS			0	0	1.1	9.0
80	IV	72	F	SSM			0	0	<u>981</u>	<u>438</u>
81	IV	73	F	SSM			0	0	<u>56.1</u>	7.7
82	IV	45	F	unknown			<u>10</u>	<u>5</u>	5.5	11.6
83	IV	60	F	MUCOUS			<u>8</u>	<u>13</u>	8.6	11.2
84	IV	72	Μ	NM			0	0	<u>225</u>	<u>412</u>
85	IV	50	Μ	SSM			0	0	<u>957</u>	<u>438</u>
86	IV	47	F	NM		+ + +	0	0	<u>257</u>	<u>419</u>
87	IV	22	Μ	unknown			<u>57</u>	<u>60</u>	<u>25.8</u>	10.8
88	IV	39	Μ	NM			0	0	<u>170</u>	15.8
89	IV	74	F	ALM			0	0	<u>395</u>	<u>22.9</u>
90	IV	68	Μ	unknown			<u>34</u>	<u>73</u>	<u>74.2</u>	11.9
91	IV	66	F	ALM		+++	0	0	<u>246</u>	9.2

Table 1 Continued

Abbreviations: ALM, acral lentiginous melanoma; SSM, superficial spreading melanoma; LMM, lentigo maligna melanoma; NM, nodular melanoma; UICC, Unio Internationale Contra Cancrum; AJCC, American Joint Committee on Cancer; TNM, Tumor-Node-Metastasis; MIA, melanoma-inhibitory activity.

* Clinical stages, according to the UICC/AJCC TNM classification (11).

[†] The expression of GPC3 mRNA detected by RT-PCR as shown in Fig. 1B.

 \ddagger The expression of GPC3 protein detected by immunohistochemical analysis as shown in Fig. 2. The results of immunostaining are symbolized by the positive rate of all stained melanoma cells: +++, >75%; ++, 50% to 75%; +, 25% to 50%; ±, <25%; -, negative.

§ Soluble GPC3 protein in the sera was quantified by ELISA method 1 using polyclonal anti-GPC3 antibody (H-162). We could obtain reproducible results by using three different batches of antibodies H-162 and representative results were shown. We arbitrarily fixed the cut-off value at 1 unit/mL, and positive values are underlined.

 \P Soluble GPC3 protein in the sera was quantified by sandwich ELISA method 2 using goat polyclonal anti-GPC3 antibody (W-18) raised against a NH₂-terminal peptide of GPC3 and biotinilated H-162. We arbitrarily fixed the cut-off value at 1 unit/mL and positive values are underlined.

|| 5-S-CD was quantified using high performance liquid chromatography by us. The cut-off value was fixed at 10 nmol/L (6), and positive values are underlined

** MIA in the sera was detected by ELISA. We arbitary fixed the cut-off value at 17 ng/mL in this study, and positive values are underlined. †† Not tested.

centration of GPC3 protein in the 1 mL of the culture supernatant of 1×10^5 HepG2 cells after cultivation for 24 hours as 1 units/mL. Soluble GPC3 protein could be detected in culture supernatants of 5 of 11 melanoma cell lines (Fig. 3*A*). The amount of GPC3 protein in the culture supernatants of the 164 was larger than that of the SK-MEL-28, 526mel, G361, and CRL1579. On the other hand, GPC3 was not detected in the 888mel, Ihara, and MeWo (Fig. 3*A*), despite the strong expression of *GPC3* mRNA (Fig. 1*A*). Thus, there was some discrepancy between *GPC3* mRNA expression in melanoma cell lines and the amount of GPC3 protein secreted from these cells into culture supernatants. For example, we did not detect soluble GPC3 protein in the culture supernatant of human epidermal melanocytes, despite the expression of mRNA (Fig. 1*A*).

The quantification by ELISA method-1 of GPC3 protein in sera of 91 preoperative patients with melanoma, 5 patients with

large congenital melanocytic nevus, and of 60 healthy donors who have many small melanocytic nevus is indicated in Fig. 3*B* and Table 1. We detected and quantified GPC3 protein in the sera of 36 of 91 melanoma patients (39.6%) but, more importantly, not in sera of patients with large congenital melanocytic nevus and healthy donors, whereas *GPC3* mRNA and protein were expressed in melanocytic nevus tissues. We could obtain reproducible results by using three different batches of polyclonal anti-GPC3 antibody (H-162) indicating that ELISA detection of soluble GPC3 was not dependent on a particular batch of H-162. We arbitrary fixed the cutoff level at 1 units/mL, because all of the healthy donors were completely negative for serum GPC3, and there was no gray area between GPC3positive and negative patients.

Furthermore, to confirm these results, we performed sandwich ELISA method 2 by using another antihuman GPC3 goat

Fig. 2 Expression pattern of GPC3 protein in primary melanoma and melanocytic nevus lesions examined by immunohistochemical staining. *A*, primary melanoma of patient 13; GPC3 immunostaining colored brown was evident in the melanoma cells. *B*, primary melanoma of patient 69; Observation under higher magnification revealed that GPC3 immunoreactivity in melanoma cells was localized mainly in the cytoplasm. *C*, melanocytic nevus (Fig. 1*B*, *Lane* 8) with expression of GPC3. Objective magnifications; *A* and *C*: ×100, *B*: ×200.

polyclonal antibody (W-18) and biotinylated anti-GPC3 303– 464 polyclonal antibody (H-162; Fig. 3*C*; Table 1). The results obtained by using these two antibodies were similar ($R^2 = 0.89$) to those obtained by using H-162 alone (method 1), indicating that the detection of serum-soluble GPC3 was not solely dependent on the particular polyclonal antibody H-162. Thus, there was no discrepancy in identification of serum GPC3positive patients between methods 1 and 2.

The prevalence of GPC3 protein in the sera of melanoma

patients was significantly higher than that in other donors (P < 0.0001). Although Fig. 1*B* shows that melanoma tumor from patients 50, 65, 78, and 71 expressed *GPC3* mRNA, GPC3 protein was detected only in the serum of patient 50 among these 4 patients. There was no correlation between concentrations of serum GPC3 and its mRNA expressions in the melanoma tissues. There was also no correlation between concentrations of serum secreted GPC3 and levels of GPC3 protein expressed in the tissues.

Among the 21 cases in which immunohistochemical staining of melanoma tissue was done, serum GPC3 was detected in 7 (33.3%) but not in 14 (66.7%; Table 1). In 6 of the 7 (patients 5, 10, 12, 13, 69, and 74), GPC3 protein expression was detected both in the sera and in their melanoma cells, but in the remaining 1 case (patient 72), GPC3 protein expression was detected only in the sera not in melanoma cells. It was thought that almost all of the GPC3 protein produced in melanoma cells of this patient 72 was secreted. On the contrary, in 11 of the 14 (78.6%), serum GPC3 was not detected, despite GPC3 protein expression in their melanoma cells. Only 3 of the 21 cases (14.3%) did not show expression of GPC3 protein in both in melanoma cells and the sera. These results showed that most of melanoma tissues (85.7%) expressed GPC3 protein, and in \sim 50% of those patients, GPC3 protein was secreted and detected in their sera. On the contrary, although GPC3 was evidenced in most of melanocytic nevus and neonatal epidermal melanocytes, GPC3 protein was not secreted from all of the melanocytic nevus tested and adult epidermal melanocytes.

Comparison of Serum Concentrations of GPC3, 5-S-Cysteinyldopa, and Melanoma-Inhibitory Activity in Patients with Melanoma Classified by Stage. The above results clearly indicated that GPC3 might be a novel tumor marker for melanoma. We next compared the serum concentrations of GPC3, 5-S-cysteinyldopa, and melanoma-inhibitory activity in patients with melanoma classified by stage (Fig. 4; Tables 1 and 2). Fig. 4 shows serum concentrations of GPC3 quantified by ELISA method-1 (Fig. 4A), 5-S-cysteinyldopa (Fig. 4B), and melanoma-inhibitory activity (Fig. 4C) in 91 patients with melanoma (+) and 28 disease-free patients without detectable melanoma (-) classified by stage. We arbitrary fixed the cutoff level at 1 units/ml in GPC3, at 10 nmol/L in 5-S-cysteinyldopa (6), and at 17 ng/mL in melanoma-inhibitory activity, and there were two 5-S-cysteinyldopa false-positive cases in disease-free (-) stage II. Although serum concentrations of 5-S-cysteinyldopa and melanoma-inhibitory activity increased markedly in patients at stage IV, percentages of serum GPC3-positive patients were almost equal among the five clinical stages. To our surprise, we detected GPC3 in the sera of patients with very small melanoma such as stage 0 or I. There was no correlation between the positive state of three tumor markers, GPC3, 5-Scysteinyldopa, and melanoma-inhibitory activity (Table 1). More importantly, 27 of 36 GPC3-positive patients were negative for both 5-S-cysteinyldopa and melanoma-inhibitory activity (patients 5, 7, 8, 9, and so on), and many were classified as cases of relatively early Unio Internationale Contra Cancrum stages 0, I, and II (Table 1). The positive rate of these three tumor markers in patients with melanoma, classified by stage, is shown in Table 2. Total positive rate of GPC3 (36 of 91, 39.6%) was significantly higher than that of 5-S-cysteinyldopa (26.7%)

1000 в GPC3 in the sera (U/ml) 8 100 by method-1 10 1 Large congenital Melanoma Healthy patients melanocytic donors nevus patients n=91 n=5 n=60

Fig. 3 Quantification of soluble GPC3 protein using ELISA. A, quantification of GPC3 protein secreted in the culture supernatant of melanoma cell lines and HEMn by ELISA method-1. We defined the concentration of GPC3 protein in 1 mL of culture supernatants of 1×10^5 Hep G2 cells after cultivation for 24 hours as 1 unit/mL. B, quantification of GPC3 protein in sera from 91 patients with melanoma and 5 patients with large congenital melanocytic nevus, and 60 healthy donors by ELISA method-1. We could obtain reproducible results by using three different batches of polyclonal anti-GPC3 antibody, and representative results were shown. GPC protein was detected only in the sera of 36 of 91 (39.6%) patients with melanoma. C, comparison of GPC3 protein in sera quantified using antihuman GPC3 303-464 rabbit polyclonal antibodies (H-162) and antihuman GPC3 NH2terminal peptide goat polyclonal antibodies (W-18) in 91 patients with melanoma. Sandwich ELISA was done by using either H-162 alone (method 1) or W-18 fixed on the solid surface and biotinylated H-162 (method 2) to detect GPC3 trapped by the antibodies coated on the solid surface. We could obtain almost similar results ($R^2 = 0.89$) by using these two methods 1 and 2, and GPC3 in the sera from 55 patients was negative by both ELISA methods.

and melanoma-inhibitory activity (20.9%; P < 0.01). Positive rate of GPC3 at stage 0 (4 of 9, 44.4%) was significantly higher than that of 5-S-cysteinyldopa (0.0%; P < 0.05), that at stage I (10 of 25, 40.0%) was significantly higher than that of 5-Scysteinyldopa (8.0%; P < 0.01), and that at stage II (10 of 21, 47.6%) was significantly higher than that of 5-S-cysteinyldopa (10.0%) and melanoma-inhibitory activity (4.8%; P < 0.01). On the contrary, the positive rate of 5-S-cysteinyldopa at stage IV (15 of 18, 83.3%) was significantly higher than that of GPC3 (27.8%) and melanoma-inhibitory activity (50.0%; P < 0.01), and positive rate of melanoma-inhibitory activity at stage IV was significantly higher than that of GPC3 (P < 0.05).

Comparison of the Positive Rate of Serum GPC3 in Patients with Melanoma Classified by Clinical Type. We used sera from Japanese patients only in this study. Japanese melanoma has a high frequency of acral lentiginous melanoma, whereas superficial spreading melanoma and lentigo maligna melanoma are frequent types in Caucasians. Some groups have reported that acral lentiginous melanoma differs from other types of melanomas in clinical and histopathological characteristics (15–18). In fact, among 91 melanoma patients investigated in this study, 44 had acral lentiginous melanoma, 16 had superficial spreading melanoma, 9 had lentigo maligna melanoma, 5 had nodular melanoma, 12 had mucous melanoma, and 5 had unknown primary tumors. We next compared the positive rate of serum GPC3 among patients classified by these clinical types (Table 3). There was no significant correlation between the positive rate of serum GPC3 and melanoma type. Therefore, it seems likely that the usefulness of GPC3 as a marker for melanoma is not restricted to Japanese patients.

GPC3 Protein in the Sera of Melanoma Patients Disappeared after Surgical Treatments. Changes in serum levels of three tumor markers, GPC3 quantified by ELISA method-1, 5-S-cysteinyldopa, and melanoma-inhibitory activity, before and after surgical treatments in preoperative GPC3-positive 12 patients (patients 10, 11, 12, 13, 26, 35, 41, 42, 46, 55, 68, and 69) are shown in Table 4. For example, in the case of patient 35, although GPC3 and 5-S-cysteinyldopa were positive in the sera before operation, they disappeared after surgical treatments. GPC3 protein was detected in sera of these 12 patients before surgery but not so after the surgical treatments of patients with melanoma, except for patient 11 who could not be followed after the postoperative day 27. In case of patient 55, although 5-Scysteinyldopa was weakly positive in serum at postoperative

Fig. 4 Comparison of serum concentrations of GPC3, 5-S-CD, and MIA in patients with melanoma classified by stage. *A*, serum concentrations of GPC3 measured by ELISA method-1, (*B*) 5-S-CD, and (*C*) MIA in 91 patients with melanoma (+) and 28 disease-free patients without detectable melanoma (-) classified by stage. We fixed the cutoff level, indicated by a *line* in each panel, at 1 unit/mL in GPC3, at 10 nmol/L in 5-S-CD, and at 17 ng/mL in MIA. MIA, melanoma inhibitory activity.

day 925, it was not evidenced at the recurrence of the melanoma (clinical data). It must be noted that GPC3 was the only useful tumor marker to follow the efficacy of surgical treatments for patients 12, 13, 26, 41, 42, 46, 68, and 69.

DISCUSSION

There are many tumor markers including carcinoembryonic antigen (19, 20), carbohydrate antigens CA 19–9 (21), and α -fetoprotein (22). Tumor markers have been used in several settings in cancer patients, including screening measures, differentiating malignant from benign lesions, monitoring the response to treatment, and detecting recurrences. In melanoma, several tumor markers have been evaluated for use as prognostic variables, to monitor response to therapy, and to detect recurrence (4–9, 23–25). These markers include 5-S-cysteinyldopa (4–7), melanoma-inhibitory activity (8, 9), ICAM-I (24), and S100 (25, 26) and are useful to detect stage IV metastatic melanoma. However, recurrent disease often cannot be detected at sufficiently early stages, and there is no available tumor marker that can detect primary melanoma at early stages, of a small size, and without metastases.

We found, in this study, that GPC3 could be a novel useful tumor marker for melanoma, especially at early stage, even stage 0 (in situ) melanoma. Although we detected no more than 30% of patients with melanoma, using conventional markers, we could diagnose 40% of those, irrespective of clinical stages, by using serum GPC3 as a tumor marker. In our study, the sensitivity of GPC3, 5-S-cysteinyldopa, and melanoma-inhibitory activity was 36 of 91 (39.6%), 24 of 90 (26.7%), and 19 of 91 (20.9%), respectively. We could diagnose only 32 of 91 (35.2%) melanoma patients using 5-S-cysteinyldopa and melanoma-inhibitory activity. But 27 GPC3-positive patients were negative for both 5-S-cysteinyldopa and melanoma-inhibitory activity. Twenty of these 27 patients (74.1%) were classified as being at a relatively early Unio Internationale Contra Cancrum stages 0, I, and II. Therefore, GPC3 is very useful for diagnosis of melanoma at early stages. Finally, we could diagnose 59 of 91 (64.8%) cases of melanoma using 5-S-cysteinyldopa, melanoma-inhibitory activity, and GPC3, a novel tumor marker. Furthermore, GPC3 is superior in specificity to other markers for melanoma. 5-S-cysteinyldopa often gives a false-positivity result. Serum 5-S-cysteinyldopa levels are often increased in patients with a large congenital melanocytic nevus (26). In this study, there were also 2 false-positive cases in disease-free patients. We reported that GPC3 protein in the sera was detect-

 Table 2
 Positive rates of serum levels of GPC3, 5-S-CD, and MIA in patients with melanoma classified by stage

Stage	GPC3	5-S-CD	MIA
0	<u>4/9 (44.4%)</u> *	0/9 (0.0%)	1/9 (11.1%)
Ι	<u>10/25 (40.0%)</u>	2/25 (8.0%)	5/25 (20.0%)
II	<u>10/21 (47.6%)</u>	2/20 (10.0%)	1/21 (4.8%)
III	7/18 (38.9%)	5/18 (27.8%)	3/18 (16.7%)
IV	5/18 (27.8%)	<u>15/18 (83.3%)</u>	<u>9/18 (50.0%)</u>
Total	<u>36/91 (39.6%)</u>	24/90 (26.7%)	19/91 (20.9%)

Abbreviations: MIA, melanoma-inhibitory activity

* Values significantly higher than others in the same clinical stage group are underlined.

 Table 3
 Positive rates of serum levels of GPC3 in patients with melanoma classified by clinical type

Туре	Positive rate of GPC3 in sera
ALM	15/44 (34.1%)
SSM	9/16 (56.3%)
LMM/LM	4/9 (44.4%)
NM	2/5 (40.0%)
Mucous	3/12 (25.0%)
Total	33/86 (38.4%)

Abbreviations: ALM, acral lentiginous melanoma; SSM, superficial spreading melanoma; LMM, lentigo maligna melanoma; NM, nodular melanoma.

	01.03	positive	12 putients		
Pt. ID*		Pre-op.	POD12	POD63	POD283
	GPC3 (U/ml)†	<u>103</u> ‡	<u>17</u>	<u>44</u>	0
10	5-S-CD (nmol/L)	1.9	<u>18.2</u>	3.1	3.0
	MIA (ng/ml)	7.8	6.2	7.1	7.0
			POD27		
	GPC3 (U/ml)	<u>40</u>	<u>83</u>		
11	5-S-CD (nmol/L)	5.5	NT		
	MIA (ng/ml)	<u>17.2</u>	<u>18.4</u>		
			POD13		
	GPC3 (U/ml)	<u>25</u>	0		
12	5-S-CD (nmol/L)	3.9	NT 165		
	MIA (ng/ml)	16.5	16.5		
			POD150	POD230	
	GPC3 (U/ml)	<u>20</u>	0	0	
13	5-S-CD (nmol/L)	2.3	2.4	1.8	
	MIA (ng/ml)	6.8	7.5	6.1	
			POD100		
	GPC3 (U/ml)	<u>61</u>	0		
26	5-S-CD (nmol/L)	2.5	6.4		
	MIA (ng/mi)	8.9	12.0		
			POD28		
	GPC3 (U/ml)	<u>106</u>	0		
35	5-S-CD (nmol/L)	<u>17.4</u>	5.0		
	MIA (ng/ml)	10.5	11.1		
			POD124	POD240	
	GPC3 (U/ml)	<u>75</u>	0	0	
41	5-S-CD (nmol/L)	6.4	4.0	4.6	
	MIA (ng/ml)	15.3	16.0	13.6	
			POD4	POD160	
	GPC3 (U/ml)	<u>73</u>	0	0	
42	5-S-CD (nmol/L)	7.0	5.3	7.0	
	MIA (ng/ml)	13.1	9.0	9.2	
			POD32	POD1712	
	GPC3 (U/ml)	<u>15</u>	0	0	
46	5-S-CD (nmol/L)	4.6	6.6	4.5	
	MIA (ng/ml)	9.9	13.0	10.8	
			POD925		
	GPC3 (U/ml)	<u>10</u>	0		
55	5-S-CD (nmol/L)	<u>13.3</u>	<u>11.0</u>		
	MIA (ng/ml)	11.3	14.0		
			POD27	POD50	
68	GPC3 (U/ml)	<u>132</u>	0	0	
	5-S-CD (nmol/L)	8.4	NT	NT	
	MIA (ng/ml)	6.3	14.4	7.6	
			POD98		
	GPC3 (U/ml)	<u>18</u>	0		
69	5-S-CD (nmol/L)	4.9	5.7		
	MIA (ng/ml)	14.0	11.6		

Table 4 Changes in serum levels of GPC3, 5-S-CD, and MIA, before and after surgical treatments for melanoma in preoperative GPC3-positive 12 patients

Abbreviations: POD, postoperative days; NT, not tested.

* Pt. ID was the same as shown in Table 1.

† Values quantified by ELISA method 1.

‡ Positive values are underlined.

able only in hepatocellular carcinoma patients and not in patients with other liver disease or other kinds of cancers (colon, gastric, pancreatic, biliary, esophageal, lung, and breast; ref. 10), and in this study, GPC3 protein in the sera was detectable in patients with melanoma, but not in disease-free patients after removal of the primary lesion or patients with large congenital melanocytic nevus and healthy donors, thus indicating the specificity of serum GPC3 to be 100% except for patients with hepatocellular carcinoma who were also positive for serum GPC3 as described by us (10) and others (27, 28). We confirmed the disappearance of GPC3 protein in the sera of 11 patients after surgical treatments for melanoma. Thus GPC3 is useful for monitoring the response to treatment. Taken together, these results indicate that GPC3 may prove to be an appropriate candidate for use in making a diagnosis for numbers of patients with melanoma.

There is no convincing correlation among concentrations of secreted GPC3 as measured by ELISA and levels of GPC3 mRNA expression determined by RT-PCR in melanoma cell lines and melanoma tissues (Fig. 1 and Fig. 3A; Table 1). Furthermore, there was no correlation among serum GPC3 levels and GPC3 detected by immunohistochemical analysis in melanoma patients (Table 1). We could classify melanomas into four types in terms of GPC3 protein expression and secretion as follows: secreting type 1, 2, nonsecreting type, and nonexpression type. Secreting type 1 melanoma showed a much stronger expression of GPC3 protein in melanoma cells irrespective of serum GPC3 level (patients 5, 13, and 74). On the contrary, secreting type-2 melanoma showed weak or no expression of GPC3 protein in melanoma cells (patients 10, 12, 69, and 72). Many of nonsecreting type melanoma showed moderate to strong expression of GPC3 protein in melanoma cells. Either way, ~40% of melanoma showed characteristics of secreting GPC3, irrespective of GPC3 expression levels. The same phenomena were also observed in hepatocellular carcinoma as reported by us (10). The mechanisms of secretion of GPC3 from melanoma and hepatocellular carcinoma remain to be elucidated.

There was no significant correlation among GPC3 expression or secretion and disease progression (Table 1; Fig. 4A). Many of melanocytic nevus showed moderate to strong expression of GPC3 without secretion. On the contrary, melanoma showed various expression levels of GPC3, and 40% of melanoma secreted GPC3. Thereby GPC3 expression may be important for promotion of melanoma but not for melanoma progression. However, we could not prove in this study whether or not GPC3 expression or secretion was important for melanoma progression. We speculate that GPC3 secretion may depend on the character of the cancer cells, for example, the difference in activity of protease. These questions remain to be investigated. To additionally elucidate the role of GPC3 in melanoma progression, a panel of well-characterized melanoma cell lines, which represent each stage from radial growth phase, vertical growth phase (29), to metastatic melanomas, would be useful.

In 1996, Pilia *et al.* (30) reported that *GPC3*, which encodes one member of the glypican family, is mutated in patients with Simpson-Golabi-Behmel syndrome. This syndrome is an X-linked disorder characterized by pre- and postnatal overgrowth and a broad spectrum of clinical manifestations that vary

from a very mild phenotype in carrier females to infantile lethal forms in some males (31). The list of clinical manifestations of this syndrome includes a distinct facial appearance, cleft palate, syndactyly, polydactyly, supernumerary nipples, cystic and dysplastic kidneys, and congenital heart defects (32, 33). Most GPC3 mutations are point mutations or small deletions encompassing a varying number of exons (34, 35). Given the lack of correlation between patient phenotype and location of the mutations, it has been proposed that Simpson-Golabi-Behmel syndrome is caused by the lack of a functional GPC3 protein, with additional genetic factors being responsible for the intra- and interfamilial phenotypic variation (28). The development of GPC3-deficient mice added a strong support for this hypothesis (36). These mice have several abnormalities found in Simpson-Golabi-Behmel syndrome patients, including overgrowth and cystic and dysplastic kidneys. Furthermore, it was reported that GPC3 could induce apoptosis in certain types of tumor cells (37). Some reports indicated that GPC3 expression is downregulated in tumors of different origins. They showed that, although GPC3 is expressed in normal ovary, mammary gland, and mesothelial cells, the expressions are undetectable in a significant proportion of ovarian, breast cancer, and mesothelioma cell lines (38). In all of the cases where GPC3 expression was lost, the GPC3 promoter was hypermethylated, and mutations were nil in the coding region. GPC3 expression was restored by treatment with a demethylating agent. In addition, the authors demonstrated that ectopic expression of GPC3 inhibits colony-forming activity in several these cancer cell lines. Collectively, these data suggest that GPC3 can act as a negative regulator of growth in these cancers. Insomuch as the expression of GPC3 is reduced during tumor progression in cancers originating from tissues that are GPC3-positive in adults, this reduction seems to play a role in generation of the malignant phenotype.

On the contrary, in the case of hepatocellular carcinoma, tumors originating from tissues that express GPC3 only in the embryo, GPC3 expression tends to reappear with malignant transformation. Whether or not re-expression of GPC3 plays a role in progression of these tumors is unknown. Why only in hepatocellular carcinoma and melanoma is GPC3 up-regulated and whether GPC3 is involved in oncogenesis of melanoma and hepatocellular carcinoma are some of our ongoing projects.

ACKNOWLEDGMENTS

We thank Dr. Yutaka Kawakami, Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine for providing cell lines, Tatsuko Kubo, Department of Molecular Pathology, Kumamoto University, for technical assistance, and Mariko Ohara (Fukuoka) for helpful comments.

REFERENCES

1. Brochez L, Naeyaert JM. Serological markers for melanoma. Br J Dermatol 2000;143:256-68.

2. Hauschild A, Glaser R, Christophers E. Quantification of melanomaassociated molecules in plasma/serum of melanoma patients. Recent Results Cancer Res 2001;158:169–77.

3. Hartleb J, Arndt R. Cysteine and indole derivatives as markers for malignant melanoma. J Chromatogr B Biomed Sci 2001;764:409–43.

4. Wimmer I, Meyer JC, Seifert B, Dummer R, Flace A, Burg G. Prognostic value of serum 5-S-cysteinyldopa for monitoring human

metastatic melanoma during immunochemotherapy. Cancer Res 1997; 57:5073-6.

5. Wakamatsu K, Yokochi M, Naito A, Kageshita T, Ito S. Comparison of phaeomelanin and its precursor 5-S-cysteinyldopa in the serum of melanoma patients. Melanoma Res 2003;13:357–63.

6. Wakamatsu K, Kageshita T, Furue M, et al. Evaluation of 5-S-cysteinyldopa as a marker of melanoma progression: 10 years' experience. Melanoma Res 2002;12:245–53.

7. Hirai S, Kageshita T, Kimura T, et al. Serum levels of sICAM-1 and 5-S-cysteinyldopa as markers of melanoma progression. Melanoma Res 1997;7:58–62.

8. Bosserhoff AK, Kaufmann M, Kaluza B, et al. Melanoma-inhibiting activity, a novel serum marker for progression of malignant melanoma. Cancer Res 1997;57:3149–53.

9. Muhlbauer M, Langenbach N, Stolz W, et al. Detection of melanoma cells in the blood of melanoma patients by melanoma-inhibitory activity (MIA) reverse transcription-PCR. Clin Cancer Res 1999;5:1099–105.

10. Nakatsura T, Yoshitake Y, Senju S, et al. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun 2003;306:16–25.

11. Balch CM, Buzaid AC, Soong SJ, et al. Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol 2001;19:3635–48.

12. Nakatsura T, Senju S, Yamada K, Jotsuka T, Ogawa M, Nishimura Y. Gene cloning of immunogenic antigens overexpressed in pancreatic cancer. Biochem Biophys Res Commun 2001;281:936–44.

13. Kai M, Nakatsura T, Egami H, Senju S, Nishimura Y, Ogawa M. Heat shock protein 105 is overexpressed in a variety of human tumors. Oncol Rep 2003;10:1777–82.

14. Kageshita T, Ishihara T, Tokuo H, et al. Widespread expression of parathyroid hormone-related peptide in melanocytic cells. Br J Dermatol 2003;148:533–8.

15. Kageshita T, Nakamura T, Yamada M, Kuriya N, Arao T, Ferrone S. Differential expression of melanoma associated antigens in acral lentiginous melanoma and in nodular melanoma lesions. Cancer Res 1991;51:1726–32.

16. Krementz ET, Feed RJ, Coleman WP, 3rd, Sutherland CM, Carter RD, Campbell M. Acral lentiginous melanoma. A clinicopathologic entity. Ann Surg 1982;195:632–45.

17. Kageshita T, Hamby CV, Hirai S, Kimura T, Ono T, Ferrone S. Differential clinical significance of alpha(v)Beta(3) expression in primary lesions of acral lentiginous melanoma and of other melanoma histotypes. Int J Cancer 2000;89:153–9.

18. Sung YK, Hwang SY, Farooq M, Kim JC, Kim MK. Growth promotion of HepG2 hepatoma cells by antisense-mediated knockdown of glypican-3 is independent of insulin-like growth factor 2 signaling. Exp Mol Med 2003;35:257–62.

19. Guadagni F, Ferroni P, Carlini S, et al. A re-evaluation of carcinoembryonic antigen (CEA) as a serum marker for breast cancer: a prospective longitudinal study. Clin Cancer Res 2001;7:2357–62.

20. Maehara Y, Sugimachi K, Akagi M, Kakegawa T, Shimazu H, Tomita M. Serum carcinoembryonic antigen level increases correlate with tumor progression in patients with differentiated gastric carcinoma following noncurative resection. Cancer Res 1990;50:3952–5.

21. Harmenberg U, Wahren B, Wiechel KL. Tumor markers carbohydrate antigens CA 19–9 and CA-50 and carcinoembryonic antigen in pancreatic cancer and benign diseases of the pancreatobiliary tract. Cancer Res 1988;48:1985–8.

22. Gerl A, Lamerz R, Clemm C, Mann K, Hartenstein R, Wilmanns W. Does serum tumor marker half-life complement pretreatment risk stratification in metastatic nonseminomatous germ cell tumors? Clin Cancer Res 1996;2:1565–70.

23. Kageshita T, Yoshii A, Kimura T, et al. Clinical relevance of ICAM-1 expression in primary lesions and serum of patients with malignant melanoma. Cancer Res 1993;53:4927–32.

24. Schlagenhauff B, Schittek B, Ellwanger U, et al. Significance of serum protein S100 levels in screening for melanoma metastasis: does

protein S100 enable early detection of melanoma recurrence? Melanoma Res 2000;10:451–9.

25. Reinhardt MJ, Kensy J, Frohmann JP, et al. Value of tumour marker S-100B in melanoma patients: a comparison to 18F-FDG PET and clinical data. Nuklearmedizin 2002;41:143–7.

26. Hanawa Y, Wakamatsu K, Ikeda S. Serum concentration of 5-S-cysteinyldopa in pediatric patients with giant pigmented nevi. J Dermatol 1996;23:16–21.

27. Capurro M, Wanless IR, Sherman M, et al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastro-enterology 2003;125:89–97.

28. Hippo Y, Watanabe K, Watanabe A, et al. Identification of soluble NH2-terminal fragment of glypican-3 as a serological marker for early-stage hepatocellular carcinoma. Cancer Res 2004;64:2418–23.

29. Dong J, Phelps RG, Qiao R, et al. BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res 2003;63:3883–5.

30. Pilia G, Hughes-Benzie RM, MacKenzie A, et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet 1996;12:241–7.

31. Neri G, Gurrieri F, Zanni G, Lin A. Clinical and molecular aspects of the Simpson-Golabi-Behmel syndrome. Am J Med Genet 1998;79: 279–83.

32. Garganta CL, Bodurtha JN. Report of another family with Simpson-Golabi-Behmel syndrome and a review of the literature. Am J Med Genet 1992;44:129–35.

33. Gurrieri F, Cappa M, Neri G. Further delineation of the Simpson-Golabi-Behmel (SGB) syndrome. Am J Med Genet 1992;44:136–7.

34. Hughes-Benzie RM, Pilia G, Xuan JY, et al. Simpson-Golabi-Behmel syndrome: genotype/phenotype analysis of 18 affected males from 7 unrelated families. Am J Med Genet 1996;66:227–34.

35. Xuan JY, Hughes-Benzie RM, MacKenzie AE. A small interstitial deletion in the GPC3 gene causes Simpson-Golabi-Behmel syndrome in a Dutch-Canadian family. J Med Genet 1999;36:57–8.

36. Cano-Gauci DF, Song HH, Yang H, et al. Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol 1999;146: 255–64.

37. Gonzalez AD, Kaya M, Shi W, et al. OCI-5/GPC3, a glypican encoded by a gene that is mutated in the Simpson-Golabi-Behmel overgrowth syndrome, induces apoptosis in a cell line-specific manner. J Cell Biol 1998;141:1407–14.

38. Lin H, Huber R, Schlessinger D, Morin PJ. Frequent silencing of the GPC3 gene in ovarian cancer cell lines. Cancer Res 1999;59: 807–10.